Math 10A with Professor Stankova
Worksheet, Discussion \#8; Wednesday, 9/13/2017
GSI name: Roy Zhao

Inverse Trig Functions

Example

1. Find the derivative of $\arccos (x)$.

Solution: We know that $\cos (\arccos (x))=x$ and taking the derivative of both sides with respect to x gives $\sin (\arccos (x)) \cdot \arccos ^{\prime}(x)=1$ and so $\arccos ^{\prime}(x)=$ $\frac{1}{\sin (\arccos (x))}$. In order to get rid of the arccos, we need to express sin in terms of cos, and we can do this by using the formula $\sin ^{2}(x)+\cos ^{2}(x)=1$ so $\sin (x)=$ $\sqrt{1-\cos ^{2}(x)}$. Thus, we have that

$$
\frac{d}{d x} \arccos (x)=\frac{1}{\sin (\arccos (x))}=\frac{1}{\sqrt{1-\cos ^{2}(\arccos (x))}}=\frac{1}{\sqrt{1-x^{2}}}
$$

2. Find the derivative of $\arctan (x)$.

Solution: Starting with $\tan (\arctan (x))=x$, we have that $\sec ^{2}(\arctan (x)) \cdot \arctan ^{\prime}(x)=$ 1. We want to find $\sec ^{2}(x)=\frac{1}{\cos ^{2}(x)}$ in terms of $\tan (x)=\frac{\sin (x)}{\cos (x)}$. Notice that both have $\cos (x)$ in the denominator and see that

$$
\sec ^{2}(x)=\frac{1}{\cos ^{2}(x)}=\frac{\cos ^{2}(x)+\sin ^{2}(x)}{\cos ^{2}(x)}=1+\tan ^{2}(x),
$$

and hence

$$
\frac{d}{d x} \arctan (x)=\frac{1}{\sec ^{2}(\arctan (x))}=\frac{1}{1+\tan ^{2}(\arctan (x))}=\frac{1}{1+x^{2}} .
$$

Derivative Definition Problems

Example

3. Find $\lim _{x \rightarrow 1} \frac{\ln x}{x-1}$.

Solution: Let $f(x)=\ln x$, then $f(1)=\ln 1=0$ and so

$$
\lim _{x \rightarrow 1} \frac{\ln x}{x-1}=\lim _{x \rightarrow 1} \frac{f(x)-f(1)}{x-1}=f^{\prime}(1)=\frac{1}{1}=1 .
$$

Problems

4. Find $\lim _{h \rightarrow 0} \frac{(x+h)^{2}-x^{2}}{h}$.

Solution: Let $f(x)=x^{2}$, then

$$
\lim _{h \rightarrow 0} \frac{(x+h)^{2}-x^{2}}{h}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=f^{\prime}(x)=2 x .
$$

5. Find $\lim _{h \rightarrow 0} \frac{(x+h)^{4}-x^{4}}{h}$.

Solution: Let $f(x)=x^{4}$, then

$$
\lim _{h \rightarrow 0} \frac{(x+h)^{4}-x^{4}}{h}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=f^{\prime}(x)=4 x^{3} .
$$

6. Find $\lim _{h \rightarrow 0} \frac{\tan (x+h)-\tan x}{h}$.

Solution: Let $f(x)=\tan x$, then

$$
\lim _{h \rightarrow 0} \frac{\tan (x+h)-\tan x}{h}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=f^{\prime}(x)=\sec ^{2}(x) .
$$

7. Find $\lim _{h \rightarrow 0} \frac{(2 x+h)^{3}+3(x+h)-2 x^{3}-3 x}{h}$.

Solution: Let $f(x)=2 x^{3}+3 x$, then

$$
\lim _{h \rightarrow 0} \frac{(2 x+h)^{3}+3(x+h)-2 x^{3}-3 x}{h}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=f^{\prime}(x)=6 x^{2}+3 .
$$

8. Find $\lim _{h \rightarrow 0} \frac{\sin (2(x+h))-\sin (2 x)}{h}$.

Solution: Let $f(x)=\sin (2 x)$, then

$$
\lim _{h \rightarrow 0} \frac{\sin (2(x+h))-\sin (2 x)}{h}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=f^{\prime}(x)=2 \cos (2 x) .
$$

9. Find $\lim _{h \rightarrow 0} \frac{\cos \left((x+h)^{2}\right)-\cos \left(x^{2}\right)}{h}$.

Solution: Let $f(x)=\cos \left(x^{2}\right)$, then

$$
\lim _{h \rightarrow 0} \frac{\cos \left((x+h)^{2}\right)-\cos \left(x^{2}\right)}{h}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=f^{\prime}(x)=-2 x \sin \left(x^{2}\right) .
$$

10. Find $\lim _{x \rightarrow 0} \frac{\tan x}{x}$.

Solution: Let $f(x)=\tan x$. Then $f(0)=0$ and so

$$
\lim _{x \rightarrow 0} \frac{\tan x}{x}=\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=f^{\prime}(0)=\sec ^{2}(0)=1 .
$$

11. Find $\lim _{x \rightarrow \pi} \frac{\sin x}{x-\pi}$.

Solution: Let $f(x)=\sin x$. Then $f(\pi)=\sin \pi=0$. So

$$
\lim _{x \rightarrow \pi} \frac{\sin x}{x-\pi}=\lim _{x \rightarrow \pi} \frac{f(x)-f(\pi)}{x-\pi}=f^{\prime}(\pi)=\cos (\pi)=-1
$$

12. Find $\lim _{x \rightarrow 0} \frac{\sin x}{x}$.

Solution: Let $f(x)=\sin x$. Then $f(\pi)=\sin 0=0$. So

$$
\lim _{x \rightarrow 0} \frac{\sin x}{x}=\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=f^{\prime}(0)=\cos (0)=1
$$

13. Find $\lim _{x \rightarrow \pi / 4} \frac{\cos x-\sqrt{2} / 2}{x-\pi / 4}$.

Solution: Let $f(x)=\cos x$. Then $f(\pi / 4)=\sqrt{2} / 2$. So

$$
\lim _{x \rightarrow \pi / 4} \frac{\cos x-\sqrt{2} / 2}{x-\pi / 4}=\lim _{x \rightarrow \pi / 4} \frac{f(x)-f(\pi / 4)}{x-\pi / 4}=f^{\prime}(\pi / 4)=-\sin \pi / 4=\frac{-\sqrt{2}}{2} .
$$

14. Find $\lim _{x \rightarrow \pi / 3} \frac{\sin x-\sin (\pi / 3)}{x-\pi / 3}$.

Solution: Let $f(x)=\sin x$. So

$$
\lim _{x \rightarrow \pi / 3} \frac{\sin x-\sin (\pi / 3)}{x-\pi / 3}=\lim _{x \rightarrow \pi / 3} \frac{f(x)-f(\pi / 3)}{x-\pi / 3}=f^{\prime}(\pi / 3)=\cos \pi / 3=\frac{1}{2} .
$$

15. Find $\lim _{x \rightarrow \pi / 3} \frac{\sin x-\sqrt{3} / 2}{x-\pi / 3}$.

Solution: Let $f(x)=\sin x$. Then $f(\pi / 3)=\sqrt{3} / 2$. So

$$
\lim _{x \rightarrow \pi / 3} \frac{\sin x-\sqrt{3} / 2}{x-\pi / 3}=\lim _{x \rightarrow \pi / 3} \frac{f(x)-f(\pi / 3)}{x-\pi / 3}=f^{\prime}(\pi / 3)=\cos \pi / 3=\frac{1}{2}
$$

